Beverage Fetching Robot
Derek Schmidlkofer

Homework 2

ECE 590

5-8-06
1. Introduction:

The goal of this assignment is to design an arbitrary data bus (DB) with a separate controller unit (CU). An interesting project would be to design a robot that would drive from one room in a house to the kitchen, wait for a beverage to be placed on it, and then return. The DB will handle sensor interpretation, while the CU will issue commands to the motors.
2. Beverage Fetching Robot:

You’re sitting on the sofa watching the big playoff game, when you feel the sudden urge for a cola. What do you do? Get up and potentially miss the greatest play in sports history? No way, send the robot to get one for you. But how does the robot know how to make its way to the kitchen? Simple, just draw a contrasting line from where you are to the kitchen, i.e. if the floor is light colored use a black line and if it’s dark use a white line. For optimal performance, the line should be about half an inch thick. Then place a slim puck like magnet at each end of the line and your set. Place the robot on the magnet in the room that is not the kitchen, with its back to the direction of the line. This is starting position. By pressing the “Go” button, the robot will turn 180° follow the line; stopping if an obstacle blocks its path, then it resumes its forward progression once the obstruction is cleared. Once in the kitchen, it will wait for someone to place a drink on top of it. It then turns around and deliver the beverage to the person waiting in the other room, again following the line and avoiding obstacles.

[image: image12.jpg]

Figure 1: Example of Path Layout
[image: image2.png]

Figure 2: Possible robot configuration: with wheels,
‘Go’ button, drink indicator, magnetic sensor,
 line sensors, and object sensor
3. Robot Design:

The circuit design of the robot is broken into several parts. The two components that this report focuses on are the control unit (CU) and the data bus (DB). The DB is responsible for checking the line and optical sensors against a threshold value to simplify the data before sending it to the CU. The CU then uses all the sensor inputs to issue motor commands.

[image: image3.emf]↓"Go" Input ↓ ↓

↓Drink Status

↓Destination Reached

↓ ↓

Sensors Check →

← Sensors Check Done

← Line L Status

← Line R Status

← Object Status

↓ ↓

Motor Controller

A/D converter

Line L Sensor

Line R Sensor

Object Sensor

CU DB

Figure 3: Control Unit (CU) and Data Bus (DB) with Inputs/Outputs
3.1 The Control Unit (CU):

The CU stays in a stand by mode until the ‘go’ input is initiated by the user. Once the go command has been issued, the robot rotates 180° on the home position, and then proceeds to follow a designated line into the kitchen. During the process of following the line, the robot is regularly checking the object, line, and destination sensors. The destination sensor is immediately available to the CU, but it has to send a request to the DB for the results of the line and object sensors. The robot will stop if it sees an obstacle one foot in front of it. Once the obstacle is removed, the robot will continue to follow the line using the line sensors. If the right line sensor detects the line, it will call for the robot to turn right. The left line sensor will trigger the robot to turn left. The robot will continue to follow the line until the destination sensor is activated. This sensor uses a magnetic switch that toggles as is passes over reversed polarity magnets. Example, the magnet in the home position is facing north pole up and the magnet in the kitchen is facing south pole up. Once in the kitchen, the robot will wait for a drink to be placed on top of it. The ‘drink’ sensor uses a switch that detects if an object of a certain mass or greater is place upon it. Now that the robot has the drink, it will turn around and return to the home position, again following the line while avoiding obstacles. The commands issued to the motor controller are as follows:

[image: image4.emf]Command Bit Vector

Stop 000

Forward 001

Turn Right 010

Turn Left 011

Reverse 100

Rotate 90° 101

Rotate 180° 110

Rotate 360° 111

Table 1: Motor Controller Commands

[image: image5.emf]Inputs Source TypeOutputs Destination Type

Go External InputBit Sensor CheckData Bus Bit

Drink External InputBit Motor Motor Controller3 Bit vector

Destination External InputBit

Sensor Check DoneData Bus Bit

Line L Status Data Bus Bit

Line R Status Data Bus Bit

Object Status Data Bus Bit

Table 2: CU Inputs and Outputs

[image: image6]
3.1.2 CU VHDL Code:

--
library ieee;

use ieee.std_logic_1164.all;

use work.all;

entity CU is port (

 clk : in std_logic;

 go : in std_logic;

 drink : in std_logic;

 destination : in std_logic;

 sensor_check_done : in std_logic;

 line_l_status : in std_logic;

 line_r_status : in std_logic;

 object_status : in std_logic;

 sensor_check : out std_logic;

 motor : out std_logic_vector(2 downto 0));

end CU;

architecture structural of CU is
begin
 process
 begin
 sensor_check <= '0';

 motor <= "000"; --ensure that the robot is stopped
 wait until go = '1'; --wait for "go" command
 motor <= "110"; --command to rotate 180 degrees
 line_follow1 : while destination = '0' loop --kitchen stop

point will set destination = '1'
 wait until clk = '1';

 sensor_check <= '1'; --call to data bus for sensor info
 wait until sensor_check_done = '1'; --Wait for sensors to be

checked
 sensor_check <= '0'; --reset call for data bus sensor info
 if object_status = '1' then motor <= "000"; --object blocking

path, stop
 elsif line_l_status = '1' then motor <= "011"; --turn left
 elsif line_r_status = '1' then motor <= "010"; --turn right
 else motor <= "001"; --forward
 end if;

 end loop line_follow1;

 motor <= "000"; --stop
 wait until drink = '1'; --wait for drink to be placed on robot
 motor <= "110"; --command to rotate 180 degrees
 line_follow2 : while destination = '1' loop --kitchen stop

point will set destination = '1'
 wait until clk = '1';

 sensor_check <= '1'; --call to data bus for sensor info
 wait until sensor_check_done = '1'; --Wait for sensors to be

checked
 sensor_check <= '0'; --reset call for data bus sensor info
 if object_status = '1' then motor <= "000"; --object blocking

 path, stop
 elsif line_l_status = '1' then motor <= "011"; --turn left
 elsif line_r_status = '1' then motor <= "010"; --turn right
 else motor <= "001"; --forward
 end if;

 end loop line_follow2;

 motor <= "000"; --Stop
 end process;

end structural;

--
3.2 The Data Bus (DB):

The DB waits for a call from the CU to send it sensor information. It then compares the sensor data from the AD Converter with a threshold value stored in memory to determine what values should be sent to the CU. After the DB calculations are finished, it sends a signal to the CU informing it that all sensor data is ready.

[image: image7.emf]Inputs Source Type Outputs Destination Type

Sensor Check Control Unit Bit Sensor Check DoneControl Unit Bit

Line L Sensor A/D Converter8 Bit VectorLine L Status Control Unit Bit

Line R Sensor A/D Converter8 Bit VectorLine R Status Control Unit Bit

Object Sensor A/D Converter8 Bit VectorObject Status Control Unit Bit

Line L Threshold Memory 8 Bit Vector

Line R ThresholdMemory 8 Bit Vector

Object ThresholdMemory 8 Bit Vector

Table 3: DB inputs and outputs

3.2.1 Sensors:

[image: image1.png]

A good line following sensor would be the Fairchild QRB1134. It is an infrared photo reflector sensor containing two elements, one which emits a beam of infrared light and the other which detects that light. An object in front of this sensor will reflect light. A daylight filter is built into the sensor in order to reduce interference from ambient lighting. Its optimal sensing distance is about 0.2 inches.

 Figure 4: Fairchild QRB1134
[image: image11.emf]
The Sharp GP2D12 infrared distance measuring sensor is accurate enough for object detection. It can accurately determine range to target between 10cm and 80cm and can be used as a proximity detector to detect objects between 0cm and 130cm.
 Figure 5: Sharp GP2D12

3.2.2 Data Bus Structure:

Information can pass through the DB using a serial or parallel procedure. In this particular case, the input bits from the sensors are being compared to a threshold value from memory. The comparison process examines the bits and looks for instances where the input and threshold bits differ. If this process is done using a parallel configuration, first all the bits from the input are compared to the all of the bits from the threshold. Then the circuit needs to look through the results to find instances of discrepancy. Finally, it determines which values, between the input and threshold, are larger or smaller, depending upon the circumstances and outputs the result. In a serial procedure, the bits are compared one by one. Starting with the most significant bit (MSB) the circuit is looking for the first instance of a difference in values between the input and threshold. Once a difference is found, the process is stopped and a result is output. The use of a serial process works best in this application because it produces a smaller circuit and there are fewer computation steps in the process. Bellow is an example of a possible comparison block that could be used in the DB. Three of these blocks could be arranged in parallel with their stop outputs linked together with a three input AND gate to output the sensor check done bit to the CU.
[image: image8.png]s

[anmnannsks
Sersoripi) ot

stop

s

OOt Do
Tresam J

Figure 6: DB Serial Block

[image: image9.emf]Line Sensors:

Sensor InputThresholdA outB out Sensor > Threshold

0 0 0 0 Output = A out

0 1 0 1

1 0 1 0 Object Sensor:

1 1 0 0 Sensor < Threshold

Output = B out

Table 4: DB Serial Block Truth Table and Outputs

3.2.3 DB VHDL Code:
--
library ieee;

use ieee.std_logic_1164.all;

use robot.all;

entity DB is port (

 line_l : in std_logic_vector(7 downto 0);

 line_r : in std_logic_vector(7 downto 0);

 object : in std_logic_vector(7 downto 0);

 sensor_check : in std_logic;

 line_l_threshold : in std_logic_vector(7 downto 0);

 line_r_threshold : in std_logic_vector(7 downto 0);

 object_threshold : in std_logic_vector(7 downto 0);

 sensor_check_done : out std_logic;

 line_l_status : out std_logic;

 line_r_status : out std_logic;

 object_status : out std_logic);

end DB;

architecture procedure of DB is
begin
 process
 begin

wait until sensor_check = '1';

--wait for call from CU

if object < object_threshold then object_status <= '1';

--check for object

else object_status <= '0';

--no object

end if;

if line_l > line_l_threshold then line_l_status <= '1';

--check for line

else line_l_status <= '0';

--no line

end if;

if line_r > line_r_threshold then line_r_status <= '1';

--check for line

else line_r_status <= '0';

--no line

end if;

sensor_check_done <= '1';

--tell CU that DB is done

sensor_check_done <= '0';

--reset check bit
 end process;

end procedure;

--
4. Test Bench VHDL Code:
--
library ieee;

use ieee.std_logic_1164.all;

use work.all;

entity testcu is
end testcu;

architecture test of testcu is
component cu port (

 clk : in std_logic;

 go : in std_logic;

 drink : in std_logic;

 destination : in std_logic;

 sensor_check_done : in std_logic;

 line_l_status : in std_logic;

 line_r_status : in std_logic;

 object_status : in std_logic;

 sensor_check : out std_logic;

 motor : out std_logic_vector(2 downto 0));

end component;

signal clk, go, drink, destination, sensor_check_done:std_logic;

signal line_l_status, line_r_status, object_status:std_logic;

signal sensor_check:std_logic;

signal motor:std_logic_vector(2 downto 0);

begin
 uut: cu port map(clk, go, drink, destination, sensor_check_done, line_l_status,

 line_r_status, object_status, sensor_check, motor);

 waveformgen:process
 constant interval: time:= 20 ns;

 begin
 clk <= '0';

 go <= '0';

 drink <= '0';

 destination <= '0';

 sensor_check_done <= '0';

 line_l_status <= '0';

 line_r_status <= '0';

 object_status <= '0';

 wait for interval;

 go <= '1';

 wait for interval;

 go <= '0';

 wait for interval; --no object or line
 clk <= '1';

 wait for interval;

 clk <= '0';

 wait for interval;

 sensor_check_done <= '1';

 clk <= '1';

 wait for interval;

 clk <= '0';

 wait for interval;

 clk <= '1';

 wait for interval;

 sensor_check_done <= '0';

 clk <= '0';

 wait for interval; --an object
 clk <= '1';

 object_status <= '1';

 wait for interval;

 clk <= '0';

 wait for interval;

 sensor_check_done <= '1';

 clk <= '1';

 wait for interval;

 clk <= '0';

 wait for interval;

 clk <= '1';

 object_status <= '0';

 wait for interval;

 sensor_check_done <= '0';

 clk <= '0';

 wait for interval; --line L
 clk <= '1';

 line_l_status <= '1';

 wait for interval;

 clk <= '0';

 wait for interval;

 sensor_check_done <= '1';

 clk <= '1';

 wait for interval;

 clk <= '0';

 wait for interval;

 clk <= '1';

 line_l_status <= '0';

 wait for interval;

 sensor_check_done <= '0';

 clk <= '0';

 wait for interval; --line R
 clk <= '1';

 line_r_status <= '1';

 wait for interval;

 clk <= '0';

 wait for interval;

 sensor_check_done <= '1';

 clk <= '1';

 wait for interval;

 clk <= '0';

 wait for interval;

 clk <= '1';

 line_r_status <= '0';

 wait for interval;

 sensor_check_done <= '0';

 clk <= '0';

 wait for interval;

 clk <= '1';

 wait for interval;

 clk <= '0';

 wait for interval; --destination reached
 clk <= '1';

 destination <= '1';

 wait for interval;

 clk <= '0';

 wait for interval; --drink received
 clk <= '1';

 drink <= '1';

 wait for interval;

 clk <= '0';

 wait for interval;

 clk <= '1';

 wait for interval;

 clk <= '0';

 wait for interval;

 clk <= '1';

 wait for interval;

 clk <= '0';

 wait for interval; --home
 destination <= '0';

 wait;

 end process waveformgen;

 end test;

--
[image: image10.png]

Figure 7: Test Bench Results for CU

--
library ieee;

use ieee.std_logic_1164.all;

use robot.all;

entity test_robot is
end test_robot;

architecture test of test_robot is
component CU port (

 go : in std_logic;

 drink : in std_logic;

 destination : in std_logic;

 sensor_check_done : in std_logic;

 line_l_status : in std_logic;

 line_r_status : in std_logic;

 object_status : in std_logic;

 sensor_check : out std_logic;

 motor : out std_logic_vector(2 downto 0));

end component;

component DB port (

 line_l : in std_logic_vector(7 downto 0);

 line_r : in std_logic_vector(7 downto 0);

 object : in std_logic_vector(7 downto 0);

 sensor_check : in std_logic;

 line_l_threshold : in std_logic_vector(7 downto 0);

 line_r_threshold : in std_logic_vector(7 downto 0);

 object_threshold : in std_logic_vector(7 downto 0);

 sensor_check_done : out std_logic;

 line_l_status : out std_logic;

 line_r_status : out std_logic;

 object_status : out std_logic);

end component;

signal go : std_logic;

signal drink : std_logic;

signal destination : std_logic;

signal sensor_check_done : std_logic;

signal line_l_status : std_logic;

signal line_r_status : std_logic;

signal object_status : std_logic;

signal sensor_check : std_logic;

signal line_l : std_logic_vector(7 downto 0);

signal line_r : std_logic_vector(7 downto 0);

signal object : std_logic_vector(7 downto 0);

signal line_l_threshold : std_logic_vector(7 downto 0);

signal line_r_threshold : std_logic_vector(7 downto 0);

signal object_threshold : std_logic_vector(7 downto 0);

signal motor : std_logic_vector(2 downto 0);

begin
-- uut: drink_fetching_robot port map(go, drink, destination, sensor_check_done, line_l_status, line_r_status, object_status, sensor_check, line_l, line_r, object, line_l_threshold, line_r_threshold, object_threshold, motor);
 waveformgen: process
 begin
 go <= '0'; --set initial values
 drink <= '0';

 destination <= '0';

 sensor_check_done <= '0';

 line_l_status <= '0';

 line_r_status <= '0';

 object_status <= '0';

 sensor_check <= '0';

 line_l <= "00001000"; --no line
 line_r <= "00001000"; --no line
 object <= "00001000"; --no object
 object_threshold <= "00000100";

 line_l_threshold <= "00010000";

 line_r_threshold <= "00010000";

 go <= '1' after 1 sec; --start robot
 object <= "00000010" after 3 sec; --object spotted
 object <= "00001010" after 4 sec; --object removed
 line_l <= "00100000" after 3 sec; --line l spotted
 line_l <= "00001000" after 5 sec; --line l removed
 line_r <= "00100000" after 6 sec; --line r spotted
 line_r <= "00001000" after 7 sec; --line r removed
 destination <= '1' after 8 sec; --in kitchen
 drink <= '1' after 9 sec; --received drink
 object <= "00000010" after 13 sec; --object spotted
 object <= "00001010" after 14 sec; --object removed
 destination <= '0'after 15 sec; --done
 end process waveformgen;

end test;

--
5. Conclusion:

The goal of this assignment was to design an arbitrary data bus (DB) with a separate controller unit (CU). A robot was designed that would drive from one room in a house to the kitchen, wait for a beverage to be placed on it, and then return. The DB handled sensor readings, while the CU will issued commands to the motors. Together they operated as a single entity that processed and interpreted sensor data in order to control the movement of the robot.
This project could be expanded by adding more sensors and functionality to the robot. Perhaps a positioning system that would eliminate the need for a line could be added. Two or more object sensor on the front of the robot would allow it to maneuver around objects instead of just waiting for them to bee move from its path. The robot could also be programmed to perform more tasks, not just getting drinks. There are many possibilities.
3.1.1 CU Flow Chart:

Key

Yes

No

Off

Line Follow

Rotate 180°

Stop

Drink

Line Follow

Destination Reached

Check Sensors

Forward

Turn Right

Turn Left

Stop

Line R

Line L

Object

Rotate 180°

Go

PAGE
Derek Schmidlkofer
13
ECE 590 Homework2

_1208513280.xls
Sheet1

		Command		Bit Vector

		Stop		0		0		0

		Forward		0		0		1

		Turn Right		0		1		0

		Turn Left		0		1		1

		Reverse		1		0		0

		Rotate 90°		1		0		1

		Rotate 180°		1		1		0

		Rotate 360°		1		1		1

_1208517776.xls
Sheet1

		

												Line Sensors:

		Sensor Input		Threshold		A out		B out				Sensor > Threshold

		0		0		0		0				Output = A out

		0		1		0		1

		1		0		1		0				Object Sensor:

		1		1		0		0				Sensor < Threshold

												Output = B out

_1208519945.xls
Sheet1

		

																				Line L Sensor

																				Line R Sensor

																				Object Sensor

						↓"Go" Input														↓						↓

								↓Drink Status												A/D converter

										↓Destination Reached

																				↓						↓

				CU														DB

												Sensors Check →

																← Sensors Check Done

																← Line L Status

																← Line R Status

																← Object Status

				↓						↓

				Motor Controller

_1208514021.xls
Sheet1

		Inputs		Source		Type		Outputs		Destination		Type

		Sensor Check		Control Unit		Bit		Sensor Check Done		Control Unit		Bit

		Line L Sensor		A/D Converter		8 Bit Vector		Line L Status		Control Unit		Bit

		Line R Sensor		A/D Converter		8 Bit Vector		Line R Status		Control Unit		Bit

		Object Sensor		A/D Converter		8 Bit Vector		Object Status		Control Unit		Bit

		Line L Threshold		Memory		8 Bit Vector

		Line R Threshold		Memory		8 Bit Vector

		Object Threshold		Memory		8 Bit Vector

_1208153846.xls
Sheet1

		Inputs		Source		Type		Outputs		Destination		Type

		Go		External Input		Bit		Sensor Check		Data Bus		Bit

		Drink		External Input		Bit		Motor		Motor Controller		3 Bit vector

		Destination		External Input		Bit

		Sensor Check Done		Data Bus		Bit

		Line L Status		Data Bus		Bit

		Line R Status		Data Bus		Bit

		Object Status		Data Bus		Bit

